Skip to main content

NIPT and Scan: Why We Champion This Dual Approach

Graphic of a baby footprint in a heart with DNA strand on either side.

NIPT and Scan Approach: Why We Champion This Screening Method at London Pregnancy Clinic

Published

Tags

At the London Pregnancy Clinic, we’re dedicated to providing expectant mothers with advanced screening options and the highest level of care. We firmly recommend combining Non-Invasive Prenatal Testing (NIPT) and Ultrasound screening. Let’s explore why we endorse NIPT and Scan approach and how it benefits our patients.

Why Choose Both NIPT and scan?

Comprehensive Screening:  

Ultrasound visually assesses the baby’s anatomy, checking for physical abnormalities and measuring growth. NIPT, known by brand names like Natera’s Panorama AI or Eurofins’ PrenatalSafe, examines fetal DNA in the mother’s bloodstream, providing insights into potential chromosomal abnormalities like Down’s Syndrome, Edwards syndrome, and Patau syndrome.

Increased Accuracy and Early Detection:  

By merging Ultrasound’s structural insights with genetic data from NIPT, we significantly reduce false positives and offer more accurate results. As early as 10 weeks, when your baby is the size of a strawberry, we initiate the dual screening process. At this stage, we conduct the earliest possible structural anomaly scan, the Ten-week Anomaly Scan, to search for structural anomalies that NIPT can’t detect. We can rule out severe physical abnormalities like Acrania, Spina bifida, Absence of arms, hands, legs or feet, and Alobar holoprosencephaly. Only after confirming your baby’s structural development do we proceed with the NIPT test.

UNDERSTANDING THE TECHNOLOGY

Ultrasound Screening: 

Ultrasound employs sound waves to create images of the baby in the womb. A small probe, called a transducer, moves over the mother’s abdomen. The transducer emits high-frequency sound waves that bounce off the baby’s structures, and these echoes are converted into images on a screen.

Non-Invasive Prenatal Testing (NIPT): 

NIPT is a simple blood test taken from the expectant mother. This test detects tiny fragments of the baby’s DNA circulating in the mother’s bloodstream. By analysing these fragments, we can determine the risk of certain chromosomal conditions.

Is It Safe?

Absolutely. Both Ultrasound and NIPT are non-invasive and pose minimal to no risk to both mother and baby. However, it’s important to note that while NIPT is highly effective, it’s not a definitive diagnostic test. In cases of low negative predictive value, our doctors may recommend invasive tests like CVS or amniocentesis, which carry minimal miscarriage risk.

Our NIPT Options

As early as…
  • 10 weeks

  • 9 weeks

  • 10 weeks

Turnaround (Working Days)
  • 2-4

  • 5-7

  • 5-7

Lab Location
  • UK

  • US

  • US

No Call Results
  • <1%

  • <1%

  • <1%

Redraw Rate
  • 2%

  • 3%

  • 2%

Edward’, Patau & Down’s Syndrome
  • ✔

  • ✔

  • ✔

Di George Syndrome (22q del)
  • ✖

  • ✔

  • ✖

Triploidy
  • ✖

  • ✔

  • ✖

Turner Syndrome (45X)
  • ✖

  • ✔

  • ✔

Sex chromosomes aneuploidies
  • ✖

  • ✔

  • ✔

Twin pregnancies
  • ✖

  • Best

  • ✖

Vanishing twin syndrome
  • ✔

  • ✖

  • ✔

Fetal sex reveal (optional)
  • ✔

  • ✔

  • ✔

Scan + NIPT Price
  • £540

  • £540

  • £490

Extended NIPT + Scan Options
  • SMART Test £1690

  • Microdeletions £790

  • Rare Diseases £790

Other Early Ultrasound Screenings Offered

For those looking to delay their first scan, London Pregnancy Clinic offers pioneering Early Ultrasound Screenings, including the Early Fetal Scan conducted between 12 and 16 weeks, which can exclude more than one hundred serious anomalies. Additionally, our Early Fetal Echocardiography is designed to identify up to 80% of detectable severe fetal heart defects. It is a scan we highly recommend this scan for all babies with increased nuchal translucency (NT) measurements, fetal anomalies, or other unusual findings detected at 11-13 weeks scan.

Conclusion

At the London Pregnancy Clinic, we believe in providing the most comprehensive care possible. By endorsing the dual Ultrasound and NIPT approach, we ensure that our patients receive a detailed, accurate, and safe assessment of their baby’s health. Whether you choose the ten-week scan or another early anomaly scan, we’re here to guide and support you every step of the way.

If you have further questions or would like to schedule an NIPT and scan, please contact the London Pregnancy Clinic.

Book NIPT + Scan from £490

Latest Stories

Continue reading

Choosing the Best NIPT Clinic in London

Choosing the Best NIPT Clinic in London: A Comprehensive Guide for Expectant Parents

Published

Tags

Congratulations on your pregnancy! As you embark on this exciting journey, it’s essential to prioritise your baby’s health and well-being. One crucial aspect of prenatal care is Non-Invasive Prenatal Testing (NIPT), a revolutionary genetic screening tool that provides valuable information about your baby’s health. However, selecting the right clinic for this test, given the complexity of the test and the critical information it yields, requires careful consideration of various factors to ensure accurate results and proper management. In this article, we will explore the essential factors to consider when choosing the best NIPT clinics in the UK.

Expertise of Medical Professionals

One of the primary factors to consider is the expertise of the medical professionals running the clinic. Ideally, you should seek a clinic that is led by fetal medicine specialists. These specialists possess advanced knowledge in, antenatal care, fetal development, and genetics, ensuring you receive the most accurate and reliable information about your baby’s health.

NIPT Technology

The type of NIPT technology utilised by the clinic is a crucial factor in determining the accuracy of the results. Advanced technologies like Whole Genome Sequencing (WGS) or Single Nucleotide Polymorphism (SNP) are preferred over outdated microarrays, as they offer greater sensitivity and precision.

Range of NIPT Options

An excellent NIPT clinic should offer a variety of test options to cater to individual needs. However, it is essential that they can explain the differences between the tests comprehensively. Furthermore, clinics that use multiple providers may offer a broader range of NIPT options, ensuring you receive the most suitable test for your specific circumstances.

NIPT Failure Rate

Inquire about the clinic’s NIPT failure rate or “no call” results. A high failure rate can lead to inconclusive outcomes, necessitating further testing and causing unnecessary stress. Check if the clinic has its own audits regarding performance of different brands of NIPT they use. Look for a clinic that uses a NIPT brands with low failure rate to increase the chances of obtaining reliable results.

Performance of Extended Options

If the clinic offers extended NIPT options, ensure they are aware of the test’s performance and validation studies including false negative and false positive rates. Additionally, verify that the clinic has robust referral pathways for genetic counselling and diagnostic testing to assist you in making informed decisions if further testing is required.

Before undergoing the extended NIPT, if you have specific concerns about rare genetic conditions like achondroplasia, DiGeorge syndrome, Noonan syndrome, or cystic fibrosis, it is crucial to contact the clinic beforehand. Ensure that the clinic offers the type of advanced NIPT that can detect these specific rare diseases. Not all advanced NIPT tests are created equal, and by reaching out to the clinic in advance, you can confirm whether they provide the extended NIPT options necessary to address your specific concerns. This proactive approach will help you make an informed decision and choose the most suitable clinic for your needs.

Pre NIPT Counselling and Scans

A reputable clinic should provide pre NIPT counselling that covers essential aspects such as the explanation of NIPT tests, failure rates, turnaround times, and more. Additionally, they should perform a comprehensive scan before the NIPT blood draw to rule out severe fetal anomalies. This step is crucial as it prevents unnecessary NIPT testing on a baby with lethal or severe structural (physical) anomalies. Remember that structural anomalies are more common than Down syndrome.

Ultrasound Technology

Inquire about the ultrasound technology used by the clinic for the scan before NIPT blood draw. Advanced high-resolution ultrasound scanners provide clearer images and a more accurate assessment of fetal health. Avoid clinics that use outdated or low-resolution scanners, as this may affect the quality and accuracy of the scans especially at early stages of gestation (10-11 weeks). Incorrect scan information can significantly affect NIPT performance.

NIPT + Scan Price

While price is an important consideration, it should not be the sole determining factor. Lower-priced clinics may compromise on overall performance, can use not clinically validated NIPT brands or uncertified NIPT laboratories and fail in providing care in the cases of abnormal or inconclusive results. This may lead to further unexpected testing expenses. On the other hand, some high prices may be due to the clinic’s premium location, which doesn’t necessarily reflect the quality of services provided.

Read more

Conclusion

Selecting the best NIPT clinic is a critical decision that directly impacts your baby’s health and your peace of mind during pregnancy. Look for a clinic led by fetal medicine specialists, equipped with state-of-the-art NIPT and ultrasound technology, and with a comprehensive range of test options. The clinic should prioritise pre NIPT counselling and baby’s ultrasound scanning to ensure you receive the most accurate and relevant information. Remember, the best clinic will prioritise the well-being of you and your baby, providing the support and care you need during this beautiful journey.

Latest Stories

Continue reading

UCLH: A Beacon of Excellence in Obstetrics and Gynaecology

UCLH: A Beacon of Excellence in Obstetrics and Gynaecology

Published

Tags

University College London Hospitals NHS Foundation Trust (UCLH) stands as a paragon of excellence in the healthcare sector, particularly in obstetrics and gynaecology. With a legacy rooted in innovation and top-tier medical services, UCLH has garnered global recognition, ranking among the world’s best in its field. Beyond its renowned maternity services and the esteemed Fetal Medicine Unit (FMU), UCLH’s partnership with the London Pregnancy Clinic showcases a team of distinguished professionals dedicated to women’s health. Together, they underscore UCLH’s unwavering commitment to providing unparalleled care for women at every life stage.

University College London Hospitals NHS Foundation Trust (UCLH) has long been recognized as a leading institution in the realm of healthcare. With a rich history and a commitment to innovation and excellence, UCLH has consistently delivered top-tier medical services to its patients. One area where UCLH has particularly excelled is in the field of obstetrics and gynaecology.

Global Recognition

According to the Newsweek’s World’s Best Specialized Hospitals 2024 rankings, UCLH is among the top hospitals globally for obstetrics and gynaecology. This recognition is a testament to the hospital’s dedication to providing the best care for women at every stage of their lives.

Gynaecology at UCLH

The gynaecology service at UCLH offers a comprehensive range of treatments and services. From general gynaecological care to specialized treatments for conditions like endometriosis and fibroids, the department is equipped to handle a wide array of women’s health issues. The team also provides support for early pregnancy and acute gynaecological problems.

Maternity Services

UCLH’s maternity services are designed to support women throughout their pregnancy journey. The hospital offers everything from antenatal classes to postnatal support, ensuring that mothers and their babies receive the best care possible.

A standout feature of UCLH’s maternity services is the Fetal Medicine Unit (FMU). Led by a team of highly skilled specialists, the FMU offers diagnosis and treatment for complications that may arise in unborn babies. Recognized both nationally and internationally, the FMU sees over 7,000 patients each year, providing care in a supportive and professional environment.

A Rich History and a Bright Future

The University College London Hospitals NHS Foundation Trust has a storied history that dates back to the 18th century. Over the years, the trust has grown and evolved, incorporating various hospitals and expanding its range of services. Today, UCLH is not just a hospital but a conglomerate of medical institutions dedicated to research, teaching, and patient care.

In partnership with University College London, UCLH has major research activities, further cementing its reputation as a leading institution in the medical field. Each year, its hospitals treat over 500,000 outpatients and admit over 100,000 patients, showcasing the trust’s vast reach and impact.

The London Pregnancy Clinic Connection

At London Pregnancy Clinic, we are proud that many of our practitioners and support staff are either currently practicing at UCLH or have been trained there:

Dr. Fred Ushakov

Dr. Fred Ushakov is the Founder and Medical Director of the London Pregnancy Clinic. With over 35 years of medical experience, he specializes in fetal medicine and ultrasound. Notably, he is recognized as one of the most skilled ultrasound operators at the UCLH Fetal Medicine Unit. Dr. Ushakov’s contributions extend beyond clinical practice; he founded the London School of Ultrasound and the Early Fetal Scan Conference. His dedication to the field is evident in his role as an Ambassador of the International Society of Ultrasound in Obstetrics and Gynaecology (ISUOG) from 2014-2020.

Ms Shahrzad (Shaz) Khojasteh

Ms Shaz Khojasteh is a Specialist Sonographer in Obstetrics and Gynaecology. She completed her Master’s degree in Prenatal Genetics and Fetal Medicine at UCL in 2016 and underwent specialized training in Fetal Medicine Ultrasound at Kings College Hospital. Shaz has also received training in Fetal Echocardiography and has gained valuable experience in Early Pregnancy and Gynaecological ultrasound scanning.

Dr. Giovanni Granozio

Dr. Giovanni Granozio is a clinical fellow in fetal medicine at the Royal London Hospital and consults privately at the London Pregnancy Clinic. He specializes in pregnancy screening scans, particularly for pregnancies with fetal anomalies, growth-restricted babies, and twin pregnancies. Dr. Granozio graduated from the University of Salerno and later specialized in Gynaecology and Obstetrics at the University of Turin. He relocated to London in 2020 to further his training in Fetal Medicine and Obstetric Ultrasound at UCLH.

Dr. Daniel Stott

Mt Stott is a distinguished consultant in obstetrics, practicing at The Portland Hospital and University College Hospital London (UCLH). He has notably established a successful antenatal clinic for women with hypertension at UCLH and serves as the Trust’s clinical lead for foetal monitoring. Dr. Stott’s expertise lies in maternal and fetal medicine, with a particular focus on obstetric ultrasound scanning, prenatal diagnosis, and maternal medicine. He has a keen interest in pregnancies complicated by hypertension and in fetal medicine. His academic pursuits are evident in his role as an honorary lecturer at UCL and his extensive research publications in obstetric and gynaecology journals.

Latest Stories

Continue reading

The History of Ultrasound in Obstetrics and Gynaecology

The History of Ultrasound in Obstetrics and Gynaecology

Published

Tags

The world of medical imaging has seen transformative technologies over the years, and ultrasound stands tall as one of the most pioneering. This non-invasive imaging tool has become an indispensable asset in fetal medicine and gynaecology. Let’s delve deep into the history of ultrasound, understanding its workings and establishing its safety credentials.

The Dawn of Ultrasound in Medicine

The journey of ultrasound began in the early 20th century. Initially, it was utilised for industrial and marine purposes, primarily to detect submarines. It wasn’t until the 1950s that scientists began to recognise its potential in medical diagnostics. The foundational use in obstetrics was to detect and measure foetal size, growth and position, making it a pivotal tool for doctors.

Ultrasound’s Ascent in Fetal Medicine

The 1970s and 1980s were transformative decades for ultrasound. As technology advanced, the clarity and details of the ultrasound images improved exponentially. This led to its expanded role in foetal medicine. Doctors could now not only measure the size and position of the foetus but also identify structural abnormalities, understand foetal behaviour, and estimate gestational age with enhanced precision.

Screening for Down’s syndrome, congenital heart diseases, and neural tube defects became possible, marking ultrasound’s vital role in antenatal care. The ability to visualise the foetus in the womb has not only improved clinical outcomes but also allowed parents to establish an early bond with their unborn child.

Ultrasound’s Role in Gynaecology

Ultrasound in gynaecology has been revolutionary. From visualising ovarian cysts to diagnosing endometriosis, it offers a pain-free, non-invasive solution for women. The introduction of transvaginal ultrasound probes in the 1980s provided clearer, more detailed images of the uterus and ovaries, enhancing diagnostic precision.

How Does Ultrasound Work?

In layman’s terms, ultrasound uses high-frequency sound waves to produce images of structures inside the body. A device called a transducer is placed on the body, and it emits sound waves. When these waves hit a boundary between tissues, like between fluid and soft tissue, they bounce back. The returning echoes are translated by a computer into images displayed on a screen.

Is Ultrasound Safe for Humans?

One of the paramount reasons for ultrasound’s popularity is its safety. Unlike X-rays, ultrasound doesn’t use radiation. Over decades of use, there’s been no concrete evidence linking ultrasound to any harmful side effects, making it a preferred choice for examining pregnant women and their unborn babies.

However, like any medical procedure, it should be used judiciously and only when medically necessary. It’s comforting for patients to know that they’re in safe hands when undergoing an ultrasound.

In Conclusion
From its marine roots to the pinnacle of medical diagnostics, ultrasound has traversed a fascinating journey. Today, it stands as an emblem of innovation in fetal medicine and gynaecology, providing invaluable insights while ensuring patient safety. As technology continues to evolve, the horizon for ultrasound promises even more groundbreaking discoveries.

Latest Stories

Continue reading

Private NIPT Cost in London UK

Non-Invasive Prenatal Testing (NIPT) Cost in London

Published

Tags

NIPT, or Non-Invasive Prenatal Testing, is currently the safest and most accurate way to screen for chromosomal anomalies before your baby is born. However, NIPT cannot detect any physical or structural anomalies, which represent almost 2/3 of the fetal anomalies. That’s why we recommend doing NIPT with an early anomaly ultrasound scan from £490. 

Short history of NIPT

  • NIPT was first introduced in 2011 by Sequenom, using next-generation sequencing to analyze cell-free fetal DNA in maternal blood. This allowed screening for trisomies 21, 18 and 13.
  • In 2012, Ariosa Diagnostics (now Roche) launched the Harmony test, also using cfDNA analysis. Natera’s Panorama test entered the market shortly after.
  • These first-generation tests analyzed chromosomes 21, 18 and 13. Around 2013, companies began expanding NIPT to screen for sex chromosome aneuploidies.
  • By 2016, Illumina had acquired Verinata, making them a major NIPT provider. Labs like Natera, Illumina, Roche and BGI continued enhancing their tests.
  • In 2019, Illumnia launched the VeriSeq NIPT Solution v2 which added screening for microdeletions. Other labs followed with expanded NIPT panels.
  • Currently, the major players providing NIPT globally are BillionToOne Unity, EuroFins PrenatalSAFE, Illumina, Natera, Roche/Ariosa, BGI, Yourgene Health, and PerkinElmer’s Labcorp. Some operate as test manufacturers while others partner with labs.
  • NIPT technology and capabilities continue to advance rapidly. It is now recommended by many professional societies as a first-tier prenatal screening test due to higher accuracy than traditional serum screening. Adoption continues rising globally.

The importance of Ultrasound screening

There are a few key reasons why it is important to have an ultrasound scan in conjunction with NIPT:

  • NIPT is a screening test, not a diagnostic test. Ultrasound helps confirm or identify potential fetal anomalies through visual imaging rather than just a probability result.
  • Ultrasound provides important information that NIPT does not, including confirming gestational age, fetal presentation, number of fetuses, placental location, anatomical structures, and growth measurements.
  • Soft markers for aneuploidy like increased nuchal translucency, absent nasal bone, echogenic bowel or cardiac anomalies may be detected on ultrasound but not by NIPT.
  • If ultrasound dates do not match LMP dating, it can affect the accuracy of NIPT results. Ultrasound provides more precise gestational age.
  • Ultrasound helps determine if discordant NIPT results may be due to placental, vanishing twin or maternal malignancy issues.
  • Some structural defects like neural tube defects are not screened for by standard NIPT panels but may be visible on ultrasound.
  • Ultrasound provides live visualisation of the fetus, which can help make NIPT results feel more real for parents.

While NIPT is an invaluable screening tool, ultrasound adds important clinical information and imaging. Following up abnormal NIPT results with ultrasound helps determine next steps for diagnosis and pregnancy management.

What is currently offered by the NHS?

The NHS Fetal Anomaly Screening Programme screens for the following anomalies:

  • Down’s syndrome (trisomy 21)
  • Edwards’ syndrome (trisomy 18)
  • Patau’s syndrome (trisomy 13)
  • Anencephaly
  • Congenital heart defects
  • Cleft lip
  • Exomphalos
  • Gastroschisis
  • Spina bifida
  • Serious musculoskeletal problems (such as limb reduction defects)

The screening is offered to all pregnant women between 10-14 weeks of pregnancy. It involves a blood test to measure two pregnancy hormones in the mother’s blood along with an ultrasound scan (nuchal translucency scan).

The screening provides a risk assessment as to the likelihood of the baby having one of the conditions, but it is not a diagnostic test. Those with a high-risk result are offered further tests such as amniocentesis or chorionic villus sampling to confirm a diagnosis.

The NHS screening programme aims to identify potential problems early in pregnancy so parents can make informed choices and access appropriate antenatal care and treatment if needed.

Latest Stories

Continue reading

Unravelling Microdeletions: Their Causes, Risk Factors, Common Types, and Screening Methods

Microdeletions are a topic of extensive genetic research. These small deletions in the DNA sequence of a chromosome can have significant implications on an individual’s health. In this comprehensive blog post, we delve into the causes, risk factors, ten most common types of microdeletions, their prevalence, and the role of Non-Invasive Prenatal Testing (NIPT) in their detection.

What are Microdeletions?

Microdeletions are tiny losses of genetic material in the DNA sequence of a chromosome. These minute changes are typically undetectable under a standard microscope, hence the term ‘micro’. However, despite being minute, these deletions can lead to significant health and developmental problems, as they may disrupt several genes essential for growth and development.

Causes and Risk Factors

The exact cause of microdeletions remains unknown, and their occurrence seems largely spontaneous. They typically occur during the formation of reproductive cells or in early foetal development, resulting from a mistake in the cell’s DNA replication process.

In terms of risk factors, there’s no established link between microdeletions and parental age, ethnicity, or lifestyle. These changes can happen in any pregnancy, but familial history can increase the chances if a parent has a balanced translocation or an inherited microdeletion.

The Ten Most Common Microdeletion Syndromes

Here’s a list of ten of the most common microdeletion syndromes, along with their estimated prevalence:

SyndromeApproximate Prevalence
1. DiGeorge Syndrome (22q11.2 deletion syndrome)1 in 3,000 – 1 in 6,000
2. Williams Syndrome (7q11.23 deletion syndrome)1 in 7,500 – 1 in 20,000
3. Prader-Willi Syndrome1 in 10,000 – 1 in 25,000
4. Angelman Syndrome1 in 10,000 – 1 in 20,000
5. Cri-du-chat Syndrome (5p- syndrome)1 in 20,000 – 1 in 50,000
6. 1p36 Deletion Syndrome1 in 5,000 – 1 in 10,000
7. Wolf-Hirschhorn Syndrome (4p- syndrome)1 in 20,000 – 1 in 50,000
8. Smith-Magenis Syndrome (17p11.2 deletion syndrome)1 in 15,000 – 1 in 25,000
9. Alagille Syndrome (20p12 deletion syndrome)1 in 30,000 – 1 in 50,000
10. Rubinstein-Taybi Syndrome1 in 100,000 – 1 in 125,000

Microdeletions, in general, occur in approximately 1 in every 1,000 births, making them a significant contributor to genetic disorders. Just to compare Down’s Syndrome, the most common chromosomal disorder affects approximately 1 in 1,000 to 1 in 1,100 live births worldwide. The frequency of Down’s Syndrome increases significantly with the mother’s age, particularly from 35 years onwards whereas microdeletions are believed to occur randomly.

Microdeletion Screening: The Role of NIPT

Screening for microdeletions has been revolutionised by advancements in genetic testing, particularly with the introduction of Non-Invasive Prenatal Testing (NIPT). This screening test, performed from the 10th week of pregnancy, analyses cell-free DNA in the maternal blood to identify common chromosomal abnormalities and microdeletions. NIPT poses no risk to the foetus and offers a safer alternative to invasive diagnostic procedures.

Though NIPT has high accuracy rates, it’s crucial to understand that a ‘positive’ result indicates an increased risk, not a definitive diagnosis. Positive NIPT results should always be confirmed through diagnostic tests such as amniocentesis or chorionic villus sampling (CVS).

There are a number of NIPT providers who offer screening for microdeletions, such as Panorama NIPT, Unity NIPT and PrenatalSAFE.

Conclusion

While the world of microdeletions might seem complex, understanding them is crucial to advancing our knowledge of genetic disorders. Early detection, made possible by advanced screening methods like NIPT, allows for better preparation and potential intervention. As research continues to evolve, we can hope for even more effective detection and management of these genetic changes, ultimately leading to improved healthcare and patient outcomes.

Remember, if you have any concerns or questions about genetic disorders or prenatal testing, it’s always advisable to consult with a healthcare professional who can provide tailored advice based on your individual circumstances.

DiGeorge Syndrome: Causes, Risk Factors, Screening and Prevalence

DiGeorge Syndrome, also commonly known as 22q11.2 deletion syndrome (or simply 22q del,) is a complex and multifaceted disorder that many people may not be aware of. This blog post aims to shed light on the causes and risk factors of DiGeorge Syndrome, discuss screening options such as Non-Invasive Prenatal Testing (NIPT), and compare its prevalence with conditions such as Down’s Syndrome.

Understanding DiGeorge Syndrome (22Q DEL)

DiGeorge Syndrome is a chromosomal disorder caused by the deletion of a small piece of chromosome 22, specifically on the q11.2 region. The deletion happens spontaneously during the formation of reproductive cells or in early fetal development. The primary cause of 22q del is unknown, and it typically isn’t inherited from the parents.

The syndrome is characterised by a wide range of potential symptoms, including heart defects, certain facial features, and learning difficulties.problems with immune system and other abnormalities. Unfortunately, 22q del syndrome is also associated with learning difficulties and psychiatric or behavioural problems like autism and schizophrenia. Due to its complex nature, different individuals affected may present a different set of symptoms, making it a highly variable condition.

Risk Factors

Although the exact cause of the chromosomal deletion leading to DiGeorge Syndrome is unknown, it’s not typically associated with the age of the parent, unlike some other genetic disorders. The occurrence appears to be mostly random, which means that all pregnancies, irrespective of familial history, have a minimal but real risk.

Screening for DiGeorge Syndrome: The Role of NIPT

Non-Invasive Prenatal Testing (NIPT) has emerged as an invaluable tool for the early detection of several genetic disorders, including DiGeorge Syndrome. NIPT analyses cell-free DNA in the maternal blood to detect common chromosomal abnormalities. This test can be performed from the 10th week of pregnancy and poses no risk to the fetus.

While NIPT is highly accurate for detecting common trisomies like Down’s Syndrome (trisomy 21), Edwards’ syndrome (trisomy 18), and Patau’s syndrome (trisomy 13), it’s also valuable for identifying deletions like those causing DiGeorge Syndrome. It’s essential to remember, however, that a positive NIPT result for DiGeorge syndrome should be confirmed with diagnostic tests like amniocentesis or chorionic villus sampling (CVS) for a definitive diagnosis.

Not all NIPT provider offer reliable screening for DiGeorge Syndrome. Recently, the Panorama AI NIPT demonstrated impressive clinical performance for screening Di George Syndrome, you can read more about the study here. In well-designed prospective study Panorama Test was able to detect more than 80% of the fetuses affected by 22q del, showing an outstanding 50% positive predicted value.

Prevalence of DiGeorge Syndrome vs Down’s Syndrome

DiGeorge Syndrome is considered one of the most common genetic syndromes, second only to Down’s Syndrome. In the general population, it’s estimated to affect between 1 in 2,000 to 1 in 4,000 live births. Younger women have the same chance to deliver baby with 22q del as older ones.

In contrast, Down’s Syndrome, the most common chromosomal disorder, has a higher prevalence rate, affecting approximately 1 in 1,000 to 1 in 1,100 live births worldwide. The frequency of Down’s Syndrome increases significantly with the mother’s age, particularly from 35 years onwards.

Conclusion

Understanding and awareness of genetic disorders like DiGeorge Syndrome are crucial, not just for healthcare professionals, but for the general public too. While DiGeorge Syndrome is less common than Down’s Syndrome, it still represents a significant proportion of genetic disorders. By employing advanced screening methods such as NIPT, early detection and management of these conditions can be made possible.

Remember, if you have concerns or questions about genetic disorders or prenatal testing, it’s always best to consult with a healthcare professional who can provide advice tailored to your individual circumstances.

Understanding The Statistics Behind NIPT (Non-Invasive Prenatal Testing)

Summary:

The best NIPT will be really good at detecting problems (high sensitivity) and correctly saying everything is fine (high specificity). It should hardly ever make mistakes by saying there’s a problem when there isn’t (low false positive) or missing a problem and saying everything is okay (low false negative). If the test says there’s an issue, it should be highly likely to be true (high positive predictive value). And if it says everything is fine, it should be trustworthy (high negative predictive value).

NIPT (non-invasive prenatal testing) is a type of genetic test used to screen for certain chromosomal abnormalities and genetic syndromes in a developing fetus. The test involves analyzing a sample of the mother’s blood to look for fragments of DNA from the fetus.

It’s good to know the statistical terms related to NIPT performance because they help you understand how accurate the test is and what the results mean. You might be wondering why it’s important to understand those “boring statistics” related to NIPT (non-invasive prenatal testing) performance, but trust us, it’s actually really helpful! Knowing these statistical terms can make a big difference in your pregnancy journey.

By understanding these terms, you can make informed choices about your prenatal care. If the test is really accurate, you might feel more confident in the results and decide not to have further tests. But if the test has limitations, you might want to consider additional testing to get more clarity. It’s all about making sure you have the information you need to make the best choices for you and your baby.

So, while statistics might seem boring at first, they play a vital role in your understanding of the test’s accuracy, interpretation of results, and decision-making process. Embracing these statistics can give you more confidence and peace of mind throughout your pregnancy journey.

Please see below the most important statistical terms related to NIPT performance:

  1. Sensitivity: This measures how good the test is at correctly identifying fetuses that have a chromosomal abnormality. A high sensitivity means that the test is good at detecting most cases of abnormality. For example, if a test has a sensitivity of 99%, it means that out of 100 fetuses with a chromosomal abnormality, the test correctly identifies 99 of them.
  2. Specificity: This measures how good the test is at correctly identifying fetuses that do not have a chromosomal abnormality. A high specificity means that the test avoids identifying normal fetuses as abnormal. For example, if a test has a specificity of 99%, it means that out of 100 normal fetuses, the test correctly identifies 99 of them as normal.
  3. Positive predictive value (PPV): This is the probability that a positive test result is a true positive. In other words, if the test comes back positive, the PPV measures the likelihood that the fetus actually has a chromosomal abnormality. For example, if a test has a PPV of 95%, it means that out of 100 positive test results, 95 of them are true positives.
  4. Negative predictive value (NPV): This is the probability that a negative test result is a true negative. In other words, if the test comes back negative, the NPV measures the likelihood that the fetus does not have a chromosomal abnormality. For example, if a test has an NPV of 99%, it means that out of 100 negative test results, 99 of them are true negatives.
  5. False positive rate (FPR): This measures how often the test gives a positive result for a normal fetus. A low FPR means the test is good at avoiding false positives. For example, if a test has an FPR of 1%, it means that out of 100 normal fetuses, the test gives a false positive result for only 1 of them.
  6. False negative rate (FNR): This measures how often the test gives a negative result for an abnormal fetus. A low FNR means the test is good at avoiding false negatives. For example, if a test has an FNR of 1%, it means that out of 100 fetuses with a chromosomal abnormality, the test gives a false negative result for only 1 of them.

When we look at how well NIPT works, it’s important to consider a bunch of statistics together. A good test will have high sensitivity, high specificity, low false positive and false negative rates, and high PPV and NPV.

Just remember, the performance of NIPT can vary depending on the specific test and the group of people being tested. So, when you get the results, make sure to understand how good that particular test is.

Considering all these statistics helps us know how reliable the test is and what the results mean for you and your baby. It’s about making informed choices and getting the best care possible.

Learn more about the NIPT providers we use:

Harmony Test by Roche: https://harmonytest.roche.com/global/en/home.html

Panorama Test by Natera: https://www.natera.com/womens-health/panorama-nipt-prenatal-screening/

PrenatalSAFE by Eurofins: https://www.eurofins.ie/biomnis/our-services/medical-testing/non-invasive-prenatal-test-nipt-prenatalsafe/

Unity Test by BillionToOne: https://unityscreen.com/

The New Age of Prenatal Screening: An In-depth Look at Non-Invasive Prenatal Testing (NIPT)

Pregnancy, while a joyous period in life, is also a time filled with uncertainties. One significant concern for expectant parents is the health of their unborn child. Fortunately, modern-day medical advancements, such as Non-Invasive Prenatal Testing (NIPT), are here to provide some peace of mind.

This article explores NIPT’s accuracy, introduces other prenatal screening options, highlights key NIPT providers, discusses its limitations and benefits, and explains instances where NIPT may not be suitable.

Unveiling Non-Invasive Prenatal Testing (NIPT)

NIPT is a revolutionary screening test that leverages advanced technology to detect the risk of specific genetic disorders in the unborn child using a simple maternal blood draw. Common conditions screened through NIPT include Down Syndrome (Trisomy 21), Edwards Syndrome (Trisomy 18), and Patau Syndrome (Trisomy 13). The screening can be performed as early as the 10th week of pregnancy.

Delving into NIPT’s Accuracy

When it comes to screening accuracy, NIPT outshines other prenatal screening tests. Its sensitivity and specificity for detecting Trisomy 21 exceed 99% and 99.9%, respectively. For Trisomy 18, the sensitivity and specificity approximate 97-99% and nearly 100%. For Trisomy 13, the sensitivity is between 90-96%, and the specificity again nears 100%.

However, it is paramount to understand that NIPT is a screening test, not a diagnostic tool. It can indicate the potential of a genetic disorder, but it cannot definitively diagnose the condition. A positive NIPT result suggests a higher risk, warranting further diagnostic tests like amniocentesis or chorionic villus sampling (CVS) for confirmation.

Exploring Other Prenatal Screening Options

NIPT isn’t the only prenatal screening available to expectant parents. Other alternatives include:

  1. First-trimester combined screening: This screening comprises a maternal blood test and an ultrasound examination. Although it can detect about 85% of Down Syndrome cases, it does carry a higher false-positive rate compared to NIPT.
  2. Quad screen: This blood test is capable of detecting around 81% of Down Syndrome cases in women under 35.
  3. Cell-free DNA screening (cfDNA): Technically similar to NIPT, this screening method has a high level of accuracy and is typically reserved for pregnancies considered high-risk due to the associated cost.
https://www.instagram.com/p/Cp5NzMet6XI

Introducing Key NIPT Providers

Several leading companies globally offer NIPT services:

  1. Eurofins (PrenatalSafe Test): A globally recognized leader in the field of genetic testing, Eurofins offers comprehensive NIPT services.
  2. Natera (Panorama Prenatal Screen): Natera stands out for its ability to perform tests as early as the 9th week of pregnancy.
  3. Roche (Harmony Prenatal Test): Pioneers in the NIPT field, Roche’s Harmony test is widely available, being offered in more than 100 countries.
  4. BillionToOne (Unity Prenatal Test): A more recent entrant into the NIPT field, offering a more cost effective test with promising clinical data.

Each provider has unique strengths, and choosing the right one depends on several factors, including your doctor’s recommendation, the test’s availability in your area, and insurance coverage.

Weighing the Limitations and Benefits of NIPT

Like all medical procedures, NIPT has its pros and cons.

Benefits of NIPT:

  • Non-invasive: NIPT requires only a maternal blood draw, posing zero risk to the fetus.
  • Early and accurate risk assessment: Compared to traditional screening methods, NIPT provides an earlier and more precise risk evaluation for certain genetic conditions.
  • Fewer invasive procedures: With its high level of accuracy, NIPT reduces the need for invasive diagnostic procedures, which carry a risk of miscarriage.

Limitations of NIPT:

  • Screening, not diagnosis: NIPT isn’t a diagnostic test; thus, a positive result warrants confirmation with further invasive testing.
  • Limited screening scope: NIPT can’t screen for all genetic and chromosomal abnormalities.
  • Not suitable for screening physical/structural anomalies which are often more prevalent and severe.
  • Possible inconclusive results: There can be instances where NIPT results are inconclusive, necessitating a retest.

NIPT Exclusions: When is NIPT Not Suitable?

Despite its many advantages, NIPT isn’t for everyone. Certain situations can limit its effectiveness, depending on the provider of the test and their algorithm. These can be, but not limited to:

  • Pregnancies involving more than two fetuses (triplets or more).
  • When the expectant mother has a history of bone marrow or organ transplant.
  • Pregnancies resulting from a donor egg.
  • Vanishing twin pregnancies.

In such situations, a detailed discussion with the healthcare provider will help in determining the best approach for prenatal screening.

In conclusion, NIPT brings a significant shift in prenatal screening with its high accuracy rate and non-invasive nature, contributing immensely to maternal and child health care. However, it’s essential for expectant parents to discuss all options with their healthcare provider and make an informed decision. The understanding that no test is perfect and that screening tests have limitations is crucial to setting appropriate expectations.

Your health and that of your baby are of the utmost importance. An open dialogue with your healthcare provider will be the best approach to address your concerns and make an informed decision about prenatal screening.

Pre Eclampsia

What is Pre-Eclampsia? 

Pre-eclampsia is a hypertensive disorder. It is characterised by persistent high blood pressure that develops during pregnancy (usually from 20 weeks) or postpartum period (up to 6 weeks postpartum). 

With careful management, most pregnancies with pre-eclampsia will have good outcomes, but complications include problems with the growth of the baby, kidney and liver damage. 

Key Stats 

  • Hypertensive disorders of pregnancy (HPD) affects 5-10% all pregnancies worldwide. This includes pre-eclampsia, eclampsia, HELLP syndrome (haemolysis, elevated liver enzymes, low platelets) and gestational hypertension. 
  • HPDs are the leading cause of maternal and infant death across the globe. 
  • Approximately 76,000 women and 500,000 babies die each year worldwide from pre-eclampsia. 
  • Black women are 3x more likely to develop pre-eclampsia and have severe outcomes. 
  • 60% of maternal deaths due to pre-eclampsia are preventable. 

Symptoms 

  • Severe headaches 
  • Welling in hands and face 
  • Visual issues 
  • Nausea and vomiting 
  • Stomach or abdomen pain 
  • Sudden weight gain 
  • Shortness of breath 

Management 

Pre-eclampsia can develop from 20 weeks of pregnancy and up to 6 weeks after childbirth. High blood pressure can usually be controlled by antihypertensive medication. The risk of pre-eclampsia in pregnancy can be reduced by maintaining a healthy lifestyle.  

Please note that all these may help decrease rates of pre-eclampsia but should be consulted with a healthcare professional prior to action. 

What We Offer? 

Our Consultant Obstetrician, Mr Daniel Stott, specialises in the management of pregnancies affected by pre-eclampsia. He helps provide mothers with post-natal care and can address any concerns mothers have during or post pregnancy. Learn more about out Private Obstetric Services on the dedicated page. 

He also runs a pre-eclampsia clinic at his NHS post at University College London Hospitals NHS Foundation Trust. Mr Stott has published an MD on haemodynamics in hypertensive pregnancies at King’s College London and has published widely in pre-eclampsia. 

Awareness 

We want to do our part in raising awareness and supportive ongoing research to #MoveResearchForward. Let’s work together to help prevent pre-eclampsia and improve outcomes for mothers and babies worldwide. 

If you require any more information on pre-eclampsia, please check out the Pre-Eclampsia Foundation