Skip to main content

Tag: NIPT

Innovations in Pregnancy Care

An illustration for a blog post about a London Pregnancy Clinic event, depicting a serene winter scene with a doctor holding a snowflake wand beside a giant, glowing snow globe. Inside the globe, a peaceful foetus is curled up, akin to a budding flower on a tree branch, symbolising the clinic's nurturing approach to prenatal care.

Innovations in Pregnancy Care

An evening dedicated to LPC’s commitment towards “Innovative Pregnancy Care”

Published

Tags

London Pregnancy Clinic’s recent “Innovative Pregnancy Care” event was a confluence of expertise and insight, shaping the future of prenatal care. Leading professionals gathered to discuss breakthroughs in early diagnostics and patient education, emphasising LPC’s forward-thinking approach.

A December evening at Spitalfields Market was transformed into a hub of medical expertise during the London Pregnancy Clinic’s event. The focus was on pioneering approaches in prenatal care, particularly the 10 Week Scan,  Non-invasive prenatal testing (NIPT), and pre-eclampsia diagnosis.

Advancing the 10 Week Scan

The evening began with Ms. Shaz Khojasteh, LPC’s clinical lead, greeting each attendee with a warmth that matched her expertise. Her introduction was not just an opening speech but a heartfelt welcome to LPC’s family. She shared with the audience our signature 10 Week Scan, which isn’t just a routine check. It’s a comprehensive examination of the baby’s anatomy, providing vital developmental insights at a crucial early stage, thereby enriching the information gathered before conducting NIPT.

Demystifying NIPT – Dr Fred Ushakov’s Perspective

The spotlight then shifted to Dr. Fred Ushakov, whose speech was not only insightful but also visionary. He spoke passionately about his mission, in collaboration with the London School of Ultrasound and UCLH, to train the next generation of doctors and sonographers. His goal is to equip them with the skills and knowledge necessary to leverage early pregnancy scans to their full potential, enhancing patient care and pregnancy outcomes. This mission, he explained, is vital in ensuring that every pregnancy is approached with the utmost care and precision.

Dr Ushakov then addressed a common misunderstanding about NIPT. He emphasised that while NIPT is effective, it’s not all-encompassing. Patients may misinterpret it as a guarantee against all prenatal issues, not realising that conditions more severe than Down’s syndrome can occur and cannot be detected by NIPT. He further highlighted the importance of the dual approach (watch the explainer video here) that he instilled at LPC. Dr. Ushakov’s call for broader education and comprehensive scanning techniques underscored the need for a more informed approach to prenatal care.

Advocacy for Pre-eclampsia Awareness

Next, we were captivated by Dr. Daniel Stott, whose talk about pre-eclampsia was as enlightening as it was heartfelt. It was clear from his words and the energy in his voice just how dedicated he is to this topic. Dr. Stott walked us through the workings of a groundbreaking blood test for pre-eclampsia. With an approachable manner, he explained how this test isn’t just for identifying pre-eclampsia; it’s a crucial tool in carefully guiding expectant mothers through the rest of their pregnancy. 

Conclusion

As the expert talks wrapped up, the event naturally transitioned into festive networking. It was a perfect opportunity for attendees to connect, exchange experiences, and build professional ties in a holiday atmosphere. The evening emerged as a crucible of innovative ideas and shared goals for advancing prenatal care. Leaving the market, we carried with us the night’s insights and a renewed hope for the future of prenatal health. The event proved to be not just a confluence of minds but a beacon of hope for prenatal care’s future.

A special thank you to our sponsors Eurofins.

Latest Stories

Continue reading

10 Week Pregnancy Scan Explained

Graphic of 10 week Scan. An illustration of a mother thinking about the normal development of her baby.

The 10-Week Scan

Answering your questions about the Earliest Anomaly Scan At 10 Weeks

Published

Tags

This blog post discusses the benefits of the 10-week scan, how it is done, and frequently asked questions. It also highlights that the 10-week scan is the best scan to combine with Non-invasive prenatal testing (NIPT), which is a blood test that can be done at 10 weeks to screen for common chromosomal abnormalities. At the London Pregnancy Clinic, We have a unique and individual approach in that we do not ‘leave any stone unturned’ – we provide the most comprehensive assessment of the development of your baby possible at each stage of pregnancy.

Understanding the 10-week Scan:

Typically, the 10-week scan is performed using either a transabdominal or transvaginal ultrasound. A skilled sonographer will place a transducer on your abdomen or within your vagina. This transducer emits sound waves into the uterus, bouncing off the fetus to create a real-time image on the ultrasound screen. The entire procedure generally lasts between 15 to 30 minutes.

Comprehensive Screening:  

In the realm of prenatal care, knowledge is power. The 10-week pregnancy scan, often regarded as the earliest anomaly scan, holds a special place in the hearts of expecting parents. It’s an opportunity to unveil critical insights into your baby’s development, offering early detection of potential fetal anomalies and precise pregnancy dating. This pivotal examination, conducted through either a transabdominal or transvaginal ultrasound, is an indispensable tool in ensuring a smooth and informed journey towards parenthood.

Benefits of the 10-week Scan:  

The advantages of the 10-week scan are numerous and profound:

Early Detection of Fetal Abnormalities: At the 10-week mark, this scan can identify up to 10 major fetal anomalies, providing parents with vital information to make informed choices about their pregnancy.

Accurate Pregnancy Dating: Precise dating of the pregnancy aids parents in planning for their baby’s arrival and arranging future prenatal appointments with confidence.

Reassurance for Parents: Pregnancy is a time of great joy but can also bring anxiety. The 10-week scan offers peace of mind, assuring parents that their pregnancy is progressing as expected.

Optimal Pairing with NIPT: When combined with NIPT, the 10-week scan offers the most accurate information on the baby’s health. NIPT, a blood test conducted at 10 weeks, screens for common chromosomal abnormalities, such as Down syndrome, trisomy 13, and trisomy 18, complementing the 10-week scan perfectly.

IS THE 10-WEEK SCAN FOR ME?

Many pregnant women in the UK are anxious about the health of their babies in the early weeks of pregnancy. This may be due to a number of factors, including:

  • Previous miscarriage
  • IVF pregnancy
  • Unintentional alcohol consumption
  • Missed doses of folic acid
  • Use of certain medications
  • Severe morning sickness
  • Bleeding
  • Unhealthy diet
  • Sudden loss of pregnancy symptoms

If you are concerned about any of these issues or others, our 10-week scan is the perfect solution for you. It is designed to provide early reassurance for expectant parents.

The 10-week scan is also ideal for any pregnant woman who wishes to have NIPT at the earliest possible stage. Many parents choose to screen for the risk of Down syndrome in the first trimester. This is now possible with a non-invasive blood test at 10 weeks. However, the majority of fetal abnormalities are structural (physical), and some of these may be more severe than Down syndrome.

Unfortunately, NIPT will miss all structural abnormalities. That is why we take the opportunity to conduct an early screening of the baby’s structures to rule out 10 major structural abnormalities before performing NIPT.

Should I Delay My NIPT until 12-14 Weeks, Post NHS NT Scan?

Opting to delay your NIPT until after your NHS (National Health Service) Nuchal Translucency (NT) scan at 12-14 weeks is an approach that is becoming increasingly outdated. We firmly believe that the most effective method is to perform both the dating scan at 10 weeks and the NIPT at 10-11 weeks. This approach offers several advantages, particularly regarding early testing.

Admittedly, some fetal structures and organs may not be fully visualized at the 10-week mark, and certain structural anomalies may remain undiagnosed due to the fetus’s ongoing development. However, the benefits of conducting both tests as early as technically feasible outweigh these limitations.

  • IVF pregnancy
  • Unintentional alcohol consumption
  • Missed doses of folic acid
  • Use of certain medications
  • Severe morning sickness
  • Bleeding
  • Unhealthy diet
  • Sudden loss of pregnancy symptoms

If you are concerned about any of these issues or others, our 10-week scan is the perfect solution for you. It is designed to provide early reassurance for expectant parents.

The 10-week scan is also ideal for any pregnant woman who wishes to have NIPT at the earliest possible stage. Many parents choose to screen for the risk of Down syndrome in the first trimester. This is now possible with a non-invasive blood test at 10 weeks. However, the majority of fetal abnormalities are structural (physical), and some of these may be more severe than Down syndrome.

Unfortunately, NIPT will miss all structural abnormalities. That is why we take the opportunity to conduct an early screening of the baby’s structures to rule out 10 major structural abnormalities before performing NIPT.

Your Frequently Asked Questions About 10-week Scan

Do I need a full bladder for the 10-week scan? No, a full bladder is not necessary for the 10-week scan.

What sets the 10-week scan apart from the nuchal translucency scan? In comparison to the nuchal translucency scan, the 10-week scan is more comprehensive. While both can measure the fluid at the back of the baby’s neck, the 10-week scan extends its scope to assess various aspects of the baby’s development, including the heart, brain, and spine.

Is the 10-week scan safe? Yes, the 10-week scan is a safe and well-established procedure. Ultrasound technology has been a trusted method for safely imaging babies in the womb for many years.

Conclusion

If you’re considering delaying your first scan or wish to explore further options, the London Pregnancy Clinic provides innovative Early Ultrasound Screenings. These include the Early Fetal Scan, conducted between 12 and 16 weeks, which can exclude more than one hundred serious anomalies. Moreover, our Early Fetal Echocardiography is designed to identify up to 80% of detectable severe fetal heart defects. We highly recommend this scan for all babies with increased nuchal translucency (NT) measurements, fetal anomalies, or other unusual findings detected at the 11-13 week scan.

In conclusion, the 10-week pregnancy scan is an essential early step in ensuring the health and well-being of your growing family. It empowers parents with valuable insights and peace of mind, setting the stage for a smooth journey into parenthood. And remember, at the London Pregnancy Clinic, we offer a range of pioneering early ultrasound screenings to cater to your specific needs, ensuring the best possible care for your precious one.

Book NIPT + Scan from £490

Latest Stories

Continue reading

Understanding NT’s 95th Percentile

Graphic of understanding NT's 95th Percentile. A baby on a timeline with abstract representations of measuring tools.

Understanding NT’s 95th Percentile:

Nuchal Translucency (NT) Thickness Measurements in the 1st Trimester and What to Do if NT is Increased?

Published

Tags

Nuchal Translucency (NT), developed over 30 years ago in the early 1990s, remains a pivotal screening marker for evaluating early fetal well-being. Widely used, it screens for chromosomal and genetic conditions, as well as heart defects and other structural anomalies in the developing fetus. To get an understanding of NT’s 95th percentile we will discuss the importance of NT measurements, variations in cutoff values, and what to do if your baby’s NT measurement falls above the 95th centile but below the 3.5mm threshold.

The Significance of Nuchal Translucency Measurements:

NT refers to measuring the clear fluid space at the back of the baby’s neck during an ultrasound scan. According to NHS guidelines, it is measured between the 11th and 14th weeks of gestation. Presently, it is a cornerstone of the NHS Chromosomal Syndromes Screening Program conducted through Combined Screening Testing (CST). This program relies on the enduring significance of NT to assess the risk of chromosomal syndromes in the first trimester of pregnancy. Elevated NT measurements can indicate potential chromosomal abnormalities such as trisomy 21 (Down syndrome) and genetic conditions like Noonan syndrome, as well as heart defects and other structural anomalies. However, there is a significant level of uncertainty regarding what constitutes an abnormal NT measurement.

Variations in Cutoff Values:

One of the challenges with NT measurements is determining what constitutes an abnormal measurement. There is considerable variation in the cutoff values used by different research papers and guidelines. The majority of research studies and international society guidelines use the 95th centile as the threshold for abnormal NT measurements. This means that if your baby’s NT measurement falls below the 95th centile, it is considered normal. However, the NHS guidelines use a more conservative cutoff of 3.5mm. This 3.5mm cutoff is equivalent to the 99th percentile, representing a higher threshold for what is considered abnormal by NHS.

The Importance of Gestational Age:

It’s crucial to understand that the 95th centile for NT measurements varies with gestational age. Younger fetuses at 11 weeks tend to have naturally smaller NT measurements compared to those closer to 14 weeks. Therefore, determining whether your baby’s NT measurement is normal or not depends on both the absolute measurement and the gestational age.

Understanding NT’s 95th Percentile Measurements:

We understand that expectant parents might find it challenging to locate validated data concerning the 95th centile cutoff for their baby, as such data is not readily accessible online. To provide support, we have developed an NT thickness reference table based on highly esteemed international data from the study conducted by Wright et al in 20081. Additionally, we have cross-referenced data on normal NT measurements for the 10-11-week gestational period from Grande et al.’s publication in 20142, which closely aligns with Wright’s findings. Consequently, we have assembled a table that delineates the limit of an increased NT (95 centile) for each week from the 10th to the 14th week, utilising gestational age data recommended by the British Medical Ultrasound Society (2009)3.


Gestational Weeks 10+0 10+1 10+2 10+3 10+4 10+5 10+6 11+0 11+1 11+2 11+3 11+4 11+5 11+6 12+0 12+1 12+2 12+3 12+4 12+5 12+6 13+0 13+1 13+2 13+3 13+4 13+5 13+6 14+0 14+1
NT 95th centile mm 2.3 2.3 2.4 2.4 2.4 2.4 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.4 2.4 2.5 2.6 2.6 2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.8

Our chart represents the distribution of increased NT measurements (> 95th centile) in relation to the gestational age. It’s important to note that, at every stage of gestation, normal NT measurements remain below 2.8 mm. Therefore, any NT measurement equal to or greater than 2.8 mm is considered elevated.

What occurs when there is a significant elevation in NT measurements? 

If NT thickness is 3.5mm or more (>99th centile) you will be referred to the fetal medicine unit (FMU) of your NHS hospital or FMU of a large regional NHS trust, where doctors will scan your baby to exclude structural anomalies associated with increased NT and offer further tests (CVS or NIPT). They will also offer fetal echocardiography at 16-20 weeks to exclude associated CHD.

What to Do if NT Measurement is Above the 95th Centile but Below 3.5mm (99th centile)?

The NHS adopts a conservative approach and does not acknowledge the 95th centile raised NT cutoff. Consequently, additional scans and tests are not scheduled for these babies before the routine 20-week anomaly scan conducted by the NHS. However, when the NT measurement surpasses the 95th percentile, it is advisable to proceed with further testing. In such instances, considering Non-invasive Prenatal Testing (NIPT) and an Early Fetal Anomaly Scan (Early Fetal Scan) are recommended.

SMART TEST – A Comprehensive Screening Option

For babies with elevated NT (between 95-99th centile), we have introduced the SMART TEST, which stands as the most advanced early reassurance package available. It comprises two expert early anomaly scans, Early Fetal Echocardiography, and the most comprehensive state-of-the-art NIPT panel. The SMART TEST can effectively rule out the majority of severe congenital heart defects (CHDs) and other structural anomalies associated with elevated NT, and reduce the probability of your baby being affected by chromosomal, genetic, or structural abnormalities.

While the SMART TEST is expensive, it is the most comprehensive early reassurance package available in the UK. For parents unable to afford the SMART TEST, there is a more affordable option of the Early Fetal Scan and an extended Panorama Test. The Early Fetal Scan screens for CHDs, but does not include a detailed examination of the fetal heart. You can further upgrade the scan and Panorama Test NIPT package to include eECHO.

If you have received concerning news about your baby’s increased nuchal translucency, we strongly recommend discussing the SMART TEST with one of our specialists.

Conclusion

Nuchal translucency measurements play a crucial role in assessing fetal well-being during the first trimester of pregnancy. Understanding the variations in cutoff values, gestational age, and available screening options is essential for making informed decisions if your baby’s NT measurement falls above the 95th centile but below the 3.5mm NHS threshold (99th centile). The SMART TEST, with its comprehensive NIPT panel and early fetal echocardiography, offers a valuable non-invasive screening option for parents seeking more information about their baby’s health. We are committed to offering you the best possible care, and you are always welcome to have a personal consultation with us to decide on the most suitable approach based on your individual circumstances.

Latest Stories

Continue reading

NIPT and Scan: Why We Champion This Dual Approach

Graphic of a baby footprint in a heart with DNA strand on either side.

NIPT and Scan Approach: Why We Champion This Screening Method at London Pregnancy Clinic

Published

Tags

At the London Pregnancy Clinic, we’re dedicated to providing expectant mothers with advanced screening options and the highest level of care. We firmly recommend combining Non-Invasive Prenatal Testing (NIPT) and Ultrasound screening. Let’s explore why we endorse NIPT and Scan approach and how it benefits our patients.

Why Choose Both NIPT and scan?

Comprehensive Screening:  

Ultrasound visually assesses the baby’s anatomy, checking for physical abnormalities and measuring growth. NIPT, known by brand names like Natera’s Panorama AI or Eurofins’ PrenatalSafe, examines fetal DNA in the mother’s bloodstream, providing insights into potential chromosomal abnormalities like Down’s Syndrome, Edwards syndrome, and Patau syndrome.

Increased Accuracy and Early Detection:  

By merging Ultrasound’s structural insights with genetic data from NIPT, we significantly reduce false positives and offer more accurate results. As early as 10 weeks, when your baby is the size of a strawberry, we initiate the dual screening process. At this stage, we conduct the earliest possible structural anomaly scan, the Ten-week Anomaly Scan, to search for structural anomalies that NIPT can’t detect. We can rule out severe physical abnormalities like Acrania, Spina bifida, Absence of arms, hands, legs or feet, and Alobar holoprosencephaly. Only after confirming your baby’s structural development do we proceed with the NIPT test.

UNDERSTANDING THE TECHNOLOGY

Ultrasound Screening: 

Ultrasound employs sound waves to create images of the baby in the womb. A small probe, called a transducer, moves over the mother’s abdomen. The transducer emits high-frequency sound waves that bounce off the baby’s structures, and these echoes are converted into images on a screen.

Non-Invasive Prenatal Testing (NIPT): 

NIPT is a simple blood test taken from the expectant mother. This test detects tiny fragments of the baby’s DNA circulating in the mother’s bloodstream. By analysing these fragments, we can determine the risk of certain chromosomal conditions.

Is It Safe?

Absolutely. Both Ultrasound and NIPT are non-invasive and pose minimal to no risk to both mother and baby. However, it’s important to note that while NIPT is highly effective, it’s not a definitive diagnostic test. In cases of low negative predictive value, our doctors may recommend invasive tests like CVS or amniocentesis, which carry minimal miscarriage risk.

Our NIPT Options

As early as…
  • 10 weeks

  • 9 weeks

  • 10 weeks

Turnaround (Working Days)
  • 2-4

  • 5-7

  • 5-7

Lab Location
  • UK

  • US

  • US

No Call Results
  • <1%

  • <1%

  • <1%

Redraw Rate
  • 2%

  • 3%

  • 2%

Edward’, Patau & Down’s Syndrome
Di George Syndrome (22q del)
Triploidy
Turner Syndrome (45X)
Sex chromosomes aneuploidies
Twin pregnancies
  • Best

Vanishing twin syndrome
Fetal sex reveal (optional)
Scan + NIPT Price
  • £540

  • £540

  • £490

Extended NIPT + Scan Options
  • SMART Test £1690

  • Microdeletions £790

  • Rare Diseases £790

Other Early Ultrasound Screenings Offered

For those looking to delay their first scan, London Pregnancy Clinic offers pioneering Early Ultrasound Screenings, including the Early Fetal Scan conducted between 12 and 16 weeks, which can exclude more than one hundred serious anomalies. Additionally, our Early Fetal Echocardiography is designed to identify up to 80% of detectable severe fetal heart defects. It is a scan we highly recommend this scan for all babies with increased nuchal translucency (NT) measurements, fetal anomalies, or other unusual findings detected at 11-13 weeks scan.

Conclusion

At the London Pregnancy Clinic, we believe in providing the most comprehensive care possible. By endorsing the dual Ultrasound and NIPT approach, we ensure that our patients receive a detailed, accurate, and safe assessment of their baby’s health. Whether you choose the ten-week scan or another early anomaly scan, we’re here to guide and support you every step of the way.

If you have further questions or would like to schedule an NIPT and scan, please contact the London Pregnancy Clinic.

Book NIPT + Scan from £490

Latest Stories

Continue reading

Harmony NIPT Test – Yesterday’s News

Harmony NIPT Test – Yesterday’s News

Published

Tags

TDL Genetics ends Harmony NIPT provision after a decade. With outdated technology, high no-call rates, and fierce competition, Harmony loses its shine. As leading NIPT providers, we’re reviewing TDL’s new offering. But for now, our advanced menu offers the latest prenatal screening. Remember – ultrasound still crucial for detecting 2/3 of fetal abnormalities.

End of an era…

TDL Genetics (The Doctor’s Laboratory) have announced last week that it will cease providing Harmony NIPT in its UK laboratories. TDL started providing Harmony Non-Invasive Prenatal Screening back in 2013.

Harmony NIPT, which was introduced by Ariosa Diagnostics in 2013, was for a long time a gold standard in Non-Invasive Prenatal Testing. The company was later acquired by the Swiss giant Roche Holdings, which was very successful at marketing the test and in many countries, the brand name ‘Harmony Test’ has become synonymous with ‘NIPT’. In the UK, this was particularly the case as it was one of the first NIPT tests to be approved by the NHS, and it offered in many state hospitals.

NIPT was first introduced by the now-defunct Sequenom, using the brand name MaterniT21Plus™, which was approved by the FDA in 2011. Harmony Test pioneered a new method of NIPT screening using a different cfDNA sequencing method. Harmony NIPT exhibited excellent clinical performance data at the time, helping it solidify its status as the preferred NIPT test by many healthcare professionals.

The future looks good!

In the past 10 years, NIPT has become a heavily researched space, meaning that many companies have raced to create their own NIPT test using a host of advanced technologies. A couple of such competitors are Natera’s ‘Panorama Test’ and Erofins’ ‘PrenatalSAFE Test’. This increased level of competition meant that patients could now benefit from much more advanced tests for chromosomal anomalies such as Down’s syndrome and screening for rare genetic diseases.

In this time, Harmony NIPT has fallen behind in terms of its technology versus the new tests. Furthermore, the equipment used for the test has become dated and as such many of the tests performed by TDL ended up failing to produce conclusive results due to ‘quality control issues’. These so-called ‘no-call’ results, or failure of one of the testing tubes, have become so prevalent with the samples we sent to TDL that we raised our first of many complaints with TDL back in 2021. Unfortunately, these lab challenges caused significant emotional distress for our expectant parents and frustration for our clinic’s team.

NIPT at London Pregnancy Clinic

In light of these developments, at London Pregnancy Clinic, being one of the top NIPT providers in the UK and leading international experts in fetal medicine, we set on the path of finding the best alternative NIPT. We were one of the first clinics in the UK to offer the advanced NIPT test from Invitae back in 2021. Since then, we have worked with many NIPT brands and have helped hundreds of patients navigate the best NIPT choice for them.

Our clinical team has spent months interviewing the laboratory teams of all major NIPT providers as well as auditing their clinical performance. We are now the leading provider of NIPT in London, and we feel responsible for our patients’ pathway to choose the best option in the market at every given time. We have the experience of providing the Harmony NIPT and other NIPTs, and the expertise to distinguish the performance of each test in the market. We do not offer any NIPT without thoroughly reviewing its characteristics and clinical data.

As of TDL’s new NIPT option, namely the Illumina VeriSeq NIPT, we are still waiting for the lab to send us clinical performance data and set up an interview with the lab team before we are able to offer the test to our patients. For now, we have many questions for the lab given the poor quality of performance of the Harmony NIPT in terms of no-call results which was much higher than Roche’s advertised levels from our experience. In the meantime, we are confident that our current menu of NIPT tests is the latest and most advanced screening options in the market with similar turnaround times to TDL.

As always, we will keep reminding our patients that NIPT should be done alongside a complete examination of the fetal anatomy via an ultrasound scan. The NIPT marketing machine has helped raise awareness of certain chromosomal anomalies, in particular Down’s Syndrome. However, NIPT can give you a false sense of reassurance as it is useless in screening for structural anomalies (physical defects) representing more than 2/3 of known fetal abnormalities and can often be detected using ultrasound.

Latest Stories

Continue reading

Gynaecological Pelvic Scans: Importance, Procedure, and Diagnostics

In the realm of gynaecology, pelvic scans play a crucial role in maintaining women’s health. These essential imaging tests help visualise the organs within the female pelvic region, aiding the diagnosis of various conditions. This comprehensive blog post provides an in-depth understanding of gynaecological pelvic scans – their importance, procedure, potential risks, the conditions they can diagnose, their history, and the organs they help visualise.

Why Are Gynaecological Pelvic Scans Important?

Gynaecological pelvic scans provide detailed images of the female pelvic organs, including the uterus, ovaries, fallopian tubes, cervix, and bladder. This non-invasive procedure aids in the diagnosis and management of numerous conditions such as fibroids, ovarian cysts, endometriosis, pelvic inflammatory disease (PID), and even cancer.

This type of imaging allows medical professionals to identify abnormalities, track their progress, and evaluate the effectiveness of treatments. It’s also a vital tool for pregnancy management, helping to monitor foetal development, placental health, and diagnose ectopic pregnancies.

How are Gynaecological Pelvic Scans Performed?

Pelvic scans in gynaecology are typically performed through ultrasound technology. Ultrasounds work by emitting high-frequency sound waves that bounce off tissues and organs, creating echoes that are converted into real-time images.

There are two main types of gynaecological pelvic scans: transabdominal and transvaginal. The transabdominal scan is performed externally, with a probe moved over the lower abdomen. For a transvaginal scan, a specially designed probe is inserted into the vagina, providing closer, more detailed images of the pelvic organs.

Are There Any Risks? Are They Painful?

Gynaecological pelvic scans are generally safe, non-invasive procedures with minimal risk. Ultrasound technology does not involve radiation, making it safer than other imaging techniques.

In terms of discomfort, while some women might experience mild discomfort during a transvaginal scan, it’s typically not painful. The procedure is usually quick, and any discomfort tends to subside immediately after the scan.

Is There a Need for Preparation?

Preparation for a gynaecological pelvic scan may vary depending on the type of ultrasound. For a transabdominal scan, patients may be asked to drink water before the procedure to fill the bladder, which allows better visualisation of the pelvic organs. For a transvaginal scan, typically, no specific preparation is required.

Conditions Diagnosed by Gynaecological Pelvic Scans

Pelvic scans can diagnose a multitude of conditions, including:

  1. Fibroids: Non-cancerous growths in the uterus, often appearing during childbearing years.
  2. Ovarian cysts: Fluid-filled sacs in the ovary, usually harmless but occasionally requiring treatment.
  3. Endometriosis: A condition where tissue similar to the lining of the uterus grows outside it, causing pain and potentially affecting fertility.
  4. Pelvic Inflammatory Disease (PID): An infection of the female reproductive organs, often due to sexually transmitted bacteria.
  5. Gynaecological cancers: Pelvic scans help detect and manage cancers of the cervix, uterus, and ovaries.

The History of Scans in Gynaecology

The use of ultrasound technology in gynaecology has evolved significantly since its first clinical application in the 1950s. The initial ‘A-mode’ ultrasounds, which provided one-dimensional information, evolved into ‘B-mode’ in the late 1950s, delivering two-dimensional images. The introduction of Doppler ultrasound in the 1970s brought colour to the images, providing information about blood flow. Today, we even have 3D and 4D ultrasounds, allowing for detailed three-dimensional imaging and real-time movement.

Organs Visualised by Gynaecological Pelvic Scans

Gynaecological pelvic scans offer comprehensive imaging of the female pelvic organs. This includes the uterus, ovaries, fallopian tubes, cervix, and bladder. Another type of scan that specifically focuses on the potency of the fallopian tubes is know as HyCoSy.

Unravelling Microdeletions: Their Causes, Risk Factors, Common Types, and Screening Methods

Microdeletions are a topic of extensive genetic research. These small deletions in the DNA sequence of a chromosome can have significant implications on an individual’s health. In this comprehensive blog post, we delve into the causes, risk factors, ten most common types of microdeletions, their prevalence, and the role of Non-Invasive Prenatal Testing (NIPT) in their detection.

What are Microdeletions?

Microdeletions are tiny losses of genetic material in the DNA sequence of a chromosome. These minute changes are typically undetectable under a standard microscope, hence the term ‘micro’. However, despite being minute, these deletions can lead to significant health and developmental problems, as they may disrupt several genes essential for growth and development.

Causes and Risk Factors

The exact cause of microdeletions remains unknown, and their occurrence seems largely spontaneous. They typically occur during the formation of reproductive cells or in early foetal development, resulting from a mistake in the cell’s DNA replication process.

In terms of risk factors, there’s no established link between microdeletions and parental age, ethnicity, or lifestyle. These changes can happen in any pregnancy, but familial history can increase the chances if a parent has a balanced translocation or an inherited microdeletion.

The Ten Most Common Microdeletion Syndromes

Here’s a list of ten of the most common microdeletion syndromes, along with their estimated prevalence:

SyndromeApproximate Prevalence
1. DiGeorge Syndrome (22q11.2 deletion syndrome)1 in 3,000 – 1 in 6,000
2. Williams Syndrome (7q11.23 deletion syndrome)1 in 7,500 – 1 in 20,000
3. Prader-Willi Syndrome1 in 10,000 – 1 in 25,000
4. Angelman Syndrome1 in 10,000 – 1 in 20,000
5. Cri-du-chat Syndrome (5p- syndrome)1 in 20,000 – 1 in 50,000
6. 1p36 Deletion Syndrome1 in 5,000 – 1 in 10,000
7. Wolf-Hirschhorn Syndrome (4p- syndrome)1 in 20,000 – 1 in 50,000
8. Smith-Magenis Syndrome (17p11.2 deletion syndrome)1 in 15,000 – 1 in 25,000
9. Alagille Syndrome (20p12 deletion syndrome)1 in 30,000 – 1 in 50,000
10. Rubinstein-Taybi Syndrome1 in 100,000 – 1 in 125,000

Microdeletions, in general, occur in approximately 1 in every 1,000 births, making them a significant contributor to genetic disorders. Just to compare Down’s Syndrome, the most common chromosomal disorder affects approximately 1 in 1,000 to 1 in 1,100 live births worldwide. The frequency of Down’s Syndrome increases significantly with the mother’s age, particularly from 35 years onwards whereas microdeletions are believed to occur randomly.

Microdeletion Screening: The Role of NIPT

Screening for microdeletions has been revolutionised by advancements in genetic testing, particularly with the introduction of Non-Invasive Prenatal Testing (NIPT). This screening test, performed from the 10th week of pregnancy, analyses cell-free DNA in the maternal blood to identify common chromosomal abnormalities and microdeletions. NIPT poses no risk to the foetus and offers a safer alternative to invasive diagnostic procedures.

Though NIPT has high accuracy rates, it’s crucial to understand that a ‘positive’ result indicates an increased risk, not a definitive diagnosis. Positive NIPT results should always be confirmed through diagnostic tests such as amniocentesis or chorionic villus sampling (CVS).

There are a number of NIPT providers who offer screening for microdeletions, such as Panorama NIPT, Unity NIPT and PrenatalSAFE.

Conclusion

While the world of microdeletions might seem complex, understanding them is crucial to advancing our knowledge of genetic disorders. Early detection, made possible by advanced screening methods like NIPT, allows for better preparation and potential intervention. As research continues to evolve, we can hope for even more effective detection and management of these genetic changes, ultimately leading to improved healthcare and patient outcomes.

Remember, if you have any concerns or questions about genetic disorders or prenatal testing, it’s always advisable to consult with a healthcare professional who can provide tailored advice based on your individual circumstances.

DiGeorge Syndrome: Causes, Risk Factors, Screening and Prevalence

DiGeorge Syndrome, also commonly known as 22q11.2 deletion syndrome (or simply 22q del,) is a complex and multifaceted disorder that many people may not be aware of. This blog post aims to shed light on the causes and risk factors of DiGeorge Syndrome, discuss screening options such as Non-Invasive Prenatal Testing (NIPT), and compare its prevalence with conditions such as Down’s Syndrome.

Understanding DiGeorge Syndrome (22Q DEL)

DiGeorge Syndrome is a chromosomal disorder caused by the deletion of a small piece of chromosome 22, specifically on the q11.2 region. The deletion happens spontaneously during the formation of reproductive cells or in early fetal development. The primary cause of 22q del is unknown, and it typically isn’t inherited from the parents.

The syndrome is characterised by a wide range of potential symptoms, including heart defects, certain facial features, and learning difficulties.problems with immune system and other abnormalities. Unfortunately, 22q del syndrome is also associated with learning difficulties and psychiatric or behavioural problems like autism and schizophrenia. Due to its complex nature, different individuals affected may present a different set of symptoms, making it a highly variable condition.

Risk Factors

Although the exact cause of the chromosomal deletion leading to DiGeorge Syndrome is unknown, it’s not typically associated with the age of the parent, unlike some other genetic disorders. The occurrence appears to be mostly random, which means that all pregnancies, irrespective of familial history, have a minimal but real risk.

Screening for DiGeorge Syndrome: The Role of NIPT

Non-Invasive Prenatal Testing (NIPT) has emerged as an invaluable tool for the early detection of several genetic disorders, including DiGeorge Syndrome. NIPT analyses cell-free DNA in the maternal blood to detect common chromosomal abnormalities. This test can be performed from the 10th week of pregnancy and poses no risk to the fetus.

While NIPT is highly accurate for detecting common trisomies like Down’s Syndrome (trisomy 21), Edwards’ syndrome (trisomy 18), and Patau’s syndrome (trisomy 13), it’s also valuable for identifying deletions like those causing DiGeorge Syndrome. It’s essential to remember, however, that a positive NIPT result for DiGeorge syndrome should be confirmed with diagnostic tests like amniocentesis or chorionic villus sampling (CVS) for a definitive diagnosis.

Not all NIPT provider offer reliable screening for DiGeorge Syndrome. Recently, the Panorama AI NIPT demonstrated impressive clinical performance for screening Di George Syndrome, you can read more about the study here. In well-designed prospective study Panorama Test was able to detect more than 80% of the fetuses affected by 22q del, showing an outstanding 50% positive predicted value.

Prevalence of DiGeorge Syndrome vs Down’s Syndrome

DiGeorge Syndrome is considered one of the most common genetic syndromes, second only to Down’s Syndrome. In the general population, it’s estimated to affect between 1 in 2,000 to 1 in 4,000 live births. Younger women have the same chance to deliver baby with 22q del as older ones.

In contrast, Down’s Syndrome, the most common chromosomal disorder, has a higher prevalence rate, affecting approximately 1 in 1,000 to 1 in 1,100 live births worldwide. The frequency of Down’s Syndrome increases significantly with the mother’s age, particularly from 35 years onwards.

Conclusion

Understanding and awareness of genetic disorders like DiGeorge Syndrome are crucial, not just for healthcare professionals, but for the general public too. While DiGeorge Syndrome is less common than Down’s Syndrome, it still represents a significant proportion of genetic disorders. By employing advanced screening methods such as NIPT, early detection and management of these conditions can be made possible.

Remember, if you have concerns or questions about genetic disorders or prenatal testing, it’s always best to consult with a healthcare professional who can provide advice tailored to your individual circumstances.

Understanding The Statistics Behind NIPT (Non-Invasive Prenatal Testing)

Summary:

The best NIPT will be really good at detecting problems (high sensitivity) and correctly saying everything is fine (high specificity). It should hardly ever make mistakes by saying there’s a problem when there isn’t (low false positive) or missing a problem and saying everything is okay (low false negative). If the test says there’s an issue, it should be highly likely to be true (high positive predictive value). And if it says everything is fine, it should be trustworthy (high negative predictive value).

NIPT (non-invasive prenatal testing) is a type of genetic test used to screen for certain chromosomal abnormalities and genetic syndromes in a developing fetus. The test involves analyzing a sample of the mother’s blood to look for fragments of DNA from the fetus.

It’s good to know the statistical terms related to NIPT performance because they help you understand how accurate the test is and what the results mean. You might be wondering why it’s important to understand those “boring statistics” related to NIPT (non-invasive prenatal testing) performance, but trust us, it’s actually really helpful! Knowing these statistical terms can make a big difference in your pregnancy journey.

By understanding these terms, you can make informed choices about your prenatal care. If the test is really accurate, you might feel more confident in the results and decide not to have further tests. But if the test has limitations, you might want to consider additional testing to get more clarity. It’s all about making sure you have the information you need to make the best choices for you and your baby.

So, while statistics might seem boring at first, they play a vital role in your understanding of the test’s accuracy, interpretation of results, and decision-making process. Embracing these statistics can give you more confidence and peace of mind throughout your pregnancy journey.

Please see below the most important statistical terms related to NIPT performance:

  1. Sensitivity: This measures how good the test is at correctly identifying fetuses that have a chromosomal abnormality. A high sensitivity means that the test is good at detecting most cases of abnormality. For example, if a test has a sensitivity of 99%, it means that out of 100 fetuses with a chromosomal abnormality, the test correctly identifies 99 of them.
  2. Specificity: This measures how good the test is at correctly identifying fetuses that do not have a chromosomal abnormality. A high specificity means that the test avoids identifying normal fetuses as abnormal. For example, if a test has a specificity of 99%, it means that out of 100 normal fetuses, the test correctly identifies 99 of them as normal.
  3. Positive predictive value (PPV): This is the probability that a positive test result is a true positive. In other words, if the test comes back positive, the PPV measures the likelihood that the fetus actually has a chromosomal abnormality. For example, if a test has a PPV of 95%, it means that out of 100 positive test results, 95 of them are true positives.
  4. Negative predictive value (NPV): This is the probability that a negative test result is a true negative. In other words, if the test comes back negative, the NPV measures the likelihood that the fetus does not have a chromosomal abnormality. For example, if a test has an NPV of 99%, it means that out of 100 negative test results, 99 of them are true negatives.
  5. False positive rate (FPR): This measures how often the test gives a positive result for a normal fetus. A low FPR means the test is good at avoiding false positives. For example, if a test has an FPR of 1%, it means that out of 100 normal fetuses, the test gives a false positive result for only 1 of them.
  6. False negative rate (FNR): This measures how often the test gives a negative result for an abnormal fetus. A low FNR means the test is good at avoiding false negatives. For example, if a test has an FNR of 1%, it means that out of 100 fetuses with a chromosomal abnormality, the test gives a false negative result for only 1 of them.

When we look at how well NIPT works, it’s important to consider a bunch of statistics together. A good test will have high sensitivity, high specificity, low false positive and false negative rates, and high PPV and NPV.

Just remember, the performance of NIPT can vary depending on the specific test and the group of people being tested. So, when you get the results, make sure to understand how good that particular test is.

Considering all these statistics helps us know how reliable the test is and what the results mean for you and your baby. It’s about making informed choices and getting the best care possible.

Learn more about the NIPT providers we use:

Harmony Test by Roche: https://harmonytest.roche.com/global/en/home.html

Panorama Test by Natera: https://www.natera.com/womens-health/panorama-nipt-prenatal-screening/

PrenatalSAFE by Eurofins: https://www.eurofins.ie/biomnis/our-services/medical-testing/non-invasive-prenatal-test-nipt-prenatalsafe/

Unity Test by BillionToOne: https://unityscreen.com/

NIPT: Non-invasive Prenatal Testing

NIPT (Non-invasive Prenatal Testing) is an optional blood test that can be performed in the first trimester from 10 weeks of pregnancy and is used to screen for some genetic conditions. Read more about NIPT:

How does NIPT work?

At City Ultrasound, we offer the Harmony Test, which is an extensively clinically validated type of NIPT. The Harmony Test is able to sensitively screen for:

  • Down Syndrome (Trisomy 21),
  • Trisomy 18,
  • Trisomy 13,
  • Fetal Sexing.

How does NIPT work?

Most of our genetic material (DNA) is contained within our cells; however, a small proportion of this circulates in our blood as cell-free DNA (cfDNA). When a woman is pregnant, the blood also contains cell-free DNA fragments from the placenta, which has a genetic make-up practically identical to that of the developing baby.

By taking a simple blood sample, the laboratory can isolate the cell-free DNA fragments and screen for risks associated with certain genetic conditions.

What can NIPT show me about my pregnancy?

At present, NIPT is an extremely sensitive test for Down’s Syndrome and it performs significantly better than the Combined Screening Test used by the NHS. However, it is important to understand that NIPT is a screening test—this means that it cannot give you a definitive diagnosis or 100% exclude any of the genetic conditions. Its purpose is to estimate whether the baby has an increased or decreased chance of the genetic conditions being tested for.

What are the limitations of NIPT?

As a screening test, NIPT can give an indication of your chance for these genetic conditions, but it cannot be used as a diagnostic tool—further tests would be needed for this. There are also instances where the test gives false-positive or false-negative results, which can give you a false sense of worry or security.

We, at City Ultrasound, strongly believe that the optimal method for checking the health of your baby during the first trimester includes the NIPT and ultrasound scanning (conducted by a specialist). More specifically, we believe that the combination of the Early Fetal Scan and NIPT is the ideal screening option. Of course, no screening program is 100% definitive, but this option allows for a detailed examination of the baby’s physical anatomy, such as the structure of the heart and brain (from the ultrasound), NIPT (as discussed above), as well as the assessment of Nuchal Translucency (NT), which examines the pocked of fluid behind the baby’s neck, giving us more information about the chances of different anomalies. This way we can offer the most information regarding all aspects of your baby’s health.

What’s next?

Normally, a “low chance” result from NIPT is very reassuring, as the test has a high negative predictive value (greater than 99%) for Down’s Syndrome.

As NIPT is not diagnostic, if a result was to suggest and increased chance of chromosomal anomaly, there would be an option to perform CVS (placental biopsy) or amniocentesis. While those are invasive and carry a small risk (0.5-1%) of miscarriage, these tests can give definitive results about the chromosomal abnormalities that may be present. Invasive tests are performed in specialist Fetal Medicine Units of hospitals. The decision to perform the invasive test is something that should be discussed with your healthcare team.

Read more here

Book your NIPT here